Robust Convolutional Neural Networks for Image Recognition
نویسندگان
چکیده
منابع مشابه
Using Convolutional Neural Networks for Image Recognition
A neural network is a system of interconnected artificial “neurons” that exchange messages between each other. The connections have numeric weights that are tuned during the training process, so that a properly trained network will respond correctly when presented with an image or pattern to recognize. The network consists of multiple layers of feature-detecting “neurons”. Each layer has many n...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملFactored Deep Convolutional Neural Networks for Noise Robust Speech Recognition
In this paper, we present a framework of a factored deep convolutional neural network (CNN) learning for noise robust automatic speech recognition (ASR). Deep CNN architecture, which has attracted great attention in various research areas, has also been successfully applied to ASR. However, to ensure noise robustness, since merely introducing deep CNN architecture into the acoustic modeling of ...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملFood Image Recognition by Using Convolutional Neural Networks (CNNs)
Food image recognition is one of the promising applications of visual object recognition in computer vision. In this study, a small-scale dataset consisting of 5822 images of ten categories and a five-layer CNN was constructed to recognize these images. The bag-of-features (BoF) model coupled with support vector machine was first tested as comparison, resulting in an overall accuracy of 56%; wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2015
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2015.061115